Experiment 8 e/me / m of the Electron 实验8 电子e/me / m

1 Purpose 1 目的

In this experiment, you will measure the charge to mass ratio of the electron, a quantity known as e/m\mathrm{e} / \mathrm{m}. The procedure demonstrates how we can use fairly basic equipment to observe one of the fundamental constituents of matter.

在本实验中,你将测量电子的电荷质量比,这个量被称为e/m\mathrm{e} / \mathrm{m}。该实验过程展示了我们如何使用基本的设备来观察物质的基本组成部分之一。

2 Introduction 2 引言

The "discovery" of the electron by J.J. Thomson in 1897 refers to the experiment in which it was shown that "cathode rays" behave as beams of particles, all of which have the same ratio of charge to mass, e/me / m. At the time, Thomson correctly recognized that he had isolated a fundamental particle of nature; for his work, he won the Nobel Prize in 1906.

电子的"发现"是由J.J.汤姆森1897年完成的,这项实验表明"阴极射线"表现为粒子束,所有粒子都具有相同的电荷质量比e/me / m。当时,汤姆森正确地认识到他发现了自然界的一个基本粒子;因为这项工作,他在1906年获得了诺贝尔奖

Thomson's experiment, and the one we will conduct today, is a simple application of the motion of a charged particle in a magnetic field. Recall that if a particle of charge ee moves with velocity v\vec{v} into a region with some magnetic field B\vec{B}, it will feel a magnetic deflection force

汤姆森的实验,以及我们今天要进行的实验,是带电粒子磁场中运动的一个简单应用。回想一下,如果带电荷ee粒子以速度v\vec{v}进入具有磁场B\vec{B}的区域,它将受到磁偏转力

Fmag =ev×B\begin{equation*} \vec{F}_{\text {mag }}=e \vec{v} \times \vec{B} \tag{8.1} \end{equation*}

Note the similarities between this expression and the magnetic force on a current-carrying wire: Fwire =iL×B\vec{F}_{\text {wire }}=i \vec{L} \times \vec{B}. This equation is in fact just a generalization of the force on a point charge, since a current is nothing more than a flow of charge.

注意这个表达式与载流导线所受磁力的相似性:Fwire =iL×B\vec{F}_{\text {wire }}=i \vec{L} \times \vec{B}。这个方程实际上只是点电荷所受力的推广,因为电流无非就是电荷的流动。

Consider the special case where v\vec{v} and B\vec{B} are perpendicular, and the magnitude of B\vec{B} is uniform. As shown in Fig. 8.1, the force Fmag \vec{F}_{\text {mag }} is directed in such a way that the particle moves in a circle of radius rr, with the plane of the circle perpendicular to B\vec{B}.

考虑v\vec{v}B\vec{B}垂直,且B\vec{B}大小均匀的特殊情况。如图8.1所示,力Fmag \vec{F}_{\text {mag }}的方向使粒子在半径为rr的圆周上运动,圆平面垂直于B\vec{B}

Since the particle moves in uniform circular motion, the magnetic force is a centripetal force,

由于粒子做匀速圆周运动,磁力就是向心力

Fc=mv2r\begin{equation*} \vec{F}_{c}=m \frac{v^{2}}{r} \tag{8.2} \end{equation*}

Figure 8.1: Deflection of a charged particle in a uniform field B\vec{B} directed into the page.

图8.1:带电粒子在指向纸内的均匀场B\vec{B}中的偏转。

We can consider equations (8.1) and (8.2) for the special case where v\vec{v} and B\vec{B} are perpendicular, and the magnitude of B\vec{B} is uniform. They suggest that, in principle, if we could measure the incoming velocity vv of the particle, we could use this result to directly measure the charge to mass ratio e/me / m.

我们可以考虑v\vec{v}B\vec{B}垂直且B\vec{B}大小均匀的特殊情况下的方程(8.1)和(8.2)。这表明原则上如果我们能测量粒子的入射速度vv,就可以用这个结果直接测量电荷质量比e/me / m

In practice, direct measurements of vv are not feasible. However, if we use some known potential difference VV to accelerate the particle from rest to a speed vv, we could rewrite the speed in terms of VV using energy conservation:

实际上,直接测量vv是不可行的。但是,如果我们使用已知的电位差VV粒子从静止加速到速度vv,我们可以用能量守恒VV来表示速度:

Ukin=12mv2 and Upot=eV\begin{equation*} U_{k i n}=\frac{1}{2} m v^{2} \quad \text { and } \quad U_{p o t}=e V \tag{8.3} \end{equation*}

By substituting vv in equations (8.2) and (8.3), e/me / m can be expressed directly in terms of V,BV, B, and the easily observed radius of curvature rr :

通过在方程(8.2)和(8.3)中代入vve/me / m可以直接用V,BV, B和容易观测到的曲率半径rr表示:

em=2VB2r2\begin{equation*} \frac{e}{m}=\frac{2 V}{B^{2} r^{2}} \tag{8.4} \end{equation*}

3 Experiment 3 实验

In the setup you will use, electrons are emitted at a very low velocity from a heated filament, accelerated through an electrical potential VV to a final velocity vv, and finally bent in a circular path of radius rr in a magnetic field BB. The entire process takes place in a sealed glass tube in which the path of the electrons can be directly observed. During its manufacture, the tube was evacuated and backfilled with a small trace of helium gas. When electrons in the beam have sufficiently high kinetic energies ( 10.4eV\geq 10.4 \mathrm{eV} ), a small fraction of them will ionize helium atoms. Recombination of the helium ions, accompanied by the emission of a characteristic blue light, occurs very near the point where the ionization took place. As a result, the path of the electron beam is visible to the naked eye as a thin blue beam of light.

在你将使用的装置中,电子从加热的灯丝以很低的速度发射出来,通过电VV加速到最终速度vv,最后在磁场BB中沿半径为rr的圆形路径弯曲。整个过程发生在密封的玻璃管中,其中电子的路径可以直接观察到。在制造过程中,被抽真空并充入少量氦气。当束流中的电子具有足够高的动能(10.4eV\geq 10.4 \mathrm{eV})时,其中一小部分会电离氦原子氦离子复合过程伴随着特征蓝光的发射,发生在电离发生的位置附近。因此,电子束的路径在肉眼可见时呈现为一束细细的蓝光。

3.1 Electron Gun in Vacuum Tube 3.1 真空管中的电子枪

Figure 8.2 shows the indirectly heated cathode and the anode plate used to accelerate the electrons. The cathode is heated by passing a current directly through the heater. A variable positive potential difference of up to 500 V is then applied between the anode and the cathode in order to accelerate the electrons emitted from the cathode. Some of the accelerated electrons come out as a narrow beam through a small aperture on the grid.

图8.2展示了用于加速电子的间接加热阴极阳极板阴极通过直接通过加热器电流加热。在阳极阴极之间施加最高500 V的可变正电位差,以加速从阴极发射的电子。一些加速后的电子通过栅极上的小孔径形成窄射出。

The tube is set up so that the beam of electrons travels perpendicular to a uniform magnetic field BB, and is initially vertical. The BB field is produced by the current II running through a pair of large diameter coils (so-called "Helmholtz coils") designed to produce optimum field uniformity near the center.

的设置使电子束垂直于均匀磁场 BB 传播,初始方向为垂直向上。BB 由通过一对大直径线圈(即所谓的"亥姆霍兹线圈")的电流 II 产生,这种设计可在中心区域产生最佳的均匀性。

Figure 8.2: Diagram of the electron gun in the sealed glass tube.

图8.2:密封玻璃管中的电子枪示意图。

3.2 The Helmholtz Coils and the Uniform Magnetic Field # 3.2 亥姆霍兹线圈和均匀磁场

A current II flowing in a single loop of wire of radius RR produces a magnetic field on the symmetry axis given by:

半径为 RR 的单圈导线中流过电流 II 在对称轴上产生的磁场由下式给出:

Bloop =μ0R2I2(R2+x2)3/2B_{\text {loop }}=\frac{\mu_{0} R^{2} I}{2\left(R^{2}+x^{2}\right)^{3 / 2}}

xx is the distance from the plane of the loop. The electromagnet used in this experiment, shown in Fig. 8.3, consists of two loops of wire with NN turns each, separated by a distance RR (the same RR as the coil radius). The coils contribute equally to the field at the center ( x=R/2x=R / 2 ), so at that point

xx 是从线圈平面的距离。本实验中使用的电磁铁如图8.3所示,由两个各有 NN 匝的导线环组成,间距为 RR(与线圈半径相同的 RR)。这些线圈在中心点(x=R/2x=R / 2)对的贡献相等,因此在该点:

BI=μ0R2NI(R2+(R/2)2)3/2=(4π×107NR(1+1/4)3/2)I=CI\begin{equation*} B_{I}=\frac{\mu_{0} R^{2} N I}{\left(R^{2}+(R / 2)^{2}\right)^{3 / 2}}=\left(\frac{4 \pi \times 10^{-7} N}{R(1+1 / 4)^{3 / 2}}\right) I=C \cdot I \tag{8.5} \end{equation*}

The setup in the laboratory has N=132N=132 turns per coil, where each coil has a radius R=0.1475 mR=0.1475 \mathrm{~m}; before you come to the lab, use these numbers to calculate the constant CC (units of T1\mathrm{T}^{-1} ). This arrangement, called a pair of Helmholtz coils, yields a highly uniform field in the region at the center.

实验室的装置每个线圈N=132N=132 匝,每个线圈的半径为 R=0.1475 mR=0.1475 \mathrm{~m};在来实验室之前,使用这些数值计算常数 CC(单位为 T1\mathrm{T}^{-1})。这种称为亥姆霍兹线圈对的装置在中心区域产生高度均匀的

Figure 8.3: Helmholtz coils used to produce a uniform magnetic field.

图8.3:用于产生均匀磁场亥姆霍兹线圈

3.3 Estimating the Charge to Mass Ratio # 3.3 估算电荷质量

The electrons are therefore emitted into a region where a uniform magnetic field acts perpendicular to the motion of the electrons. The magnitude of the magnetic field can be adjusted until the resultant circular path of the electron beam just reaches the far end of the centimeter scale. The scale extends from the electron gun in a direction perpendicular to that in which the electron beam was emitted i.e., along a diameter of the circular orbits. The scale numbers on the scale fluoresce when struck by the electron beam. Then for given values of V,BV, B and rr it would be possible to determine e/me / m from eq. (8.4).

因此,电子被发射到一个均匀磁场垂直于电子运动方向的区域。可以调节磁场的大小,直到电子束的圆形轨迹恰好到达厘米刻度的远端。刻度从电子枪开始延伸,方向垂直于电子束发射的方向,即沿着圆形轨道的直径。当电子束击中刻度时,刻度数字会发光。这样,对于给定的 V,BV, Brr 值,就可以从方程(8.4)确定 e/me / m

However, the net field B\vec{B} in which the electrons move is not only due to the Helmholtz coils, but also to the magnetic field in the ambient environment BE\vec{B}_{E}. A part of the ambient magnetic field is due to the Earth's magnetic field, but there may also be contributions from nearby ferromagnetic materials in the lab. Hence, the total field inside is the vector sum of BI\vec{B}_{I} and BE\vec{B}_{E}. We can minimize the effect of BE\vec{B}_{E} by aligning the BI\vec{B}_{I} field with the direction of the needle of a compass close to the setup. The horizontal component of BE\vec{B}_{E} is now aligned with BI\vec{B}_{I}. In fact, the value of BE\vec{B}_{E} is so small that we can safely ignore it for the purpose of this lab. Incorporating eq. (8.5) into eq. (8.4) and rearranging terms, we obtain

然而,电子运动所在的净 B\vec{B} 不仅来自亥姆霍兹线圈,还来自环境中的磁场 BE\vec{B}_{E}。环境磁场的一部分来自地球磁场,但实验室中附近的铁磁材料也可能有贡献。因此,内部的总BI\vec{B}_{I}BE\vec{B}_{E} 的矢量和。我们可以通过将 BI\vec{B}_{I} 与装置附近的指南针指针方向对齐来最小化 BE\vec{B}_{E} 的影响。BE\vec{B}_{E} 的水平分量现在与 BI\vec{B}_{I} 对齐。实际上,BE\vec{B}_{E} 的值很小,在本实验中可以安全地忽略它。将方程(8.5)代入方程(8.4)并重新整理项,我们得到

I(1C2Ve/m)1r\begin{equation*} I \simeq\left(\frac{1}{C} \sqrt{\frac{2 V}{e / m}}\right) \frac{1}{r} \tag{8.6} \end{equation*}

Now, instead of performing a single measurement of rr, we can measure the variation of rr with BB (or II ) at fixed values of VV, and use the fact that the coil current II is a linear function of the curvature 1/r1 / r.

现在,我们不用进行单次 rr 的测量,而是可以在固定的 VV 值下测量 rrBB(或 II)的变化,并利用线圈电流 II 是曲率 1/r1/r 的线性函数这一事实。

Note that eqs. (8.2), (8.3), and (8.6) apply only to electrons with trajectories on the outside edge of the beam - i.e., the most energetic electrons. This is because some electrons in the beam will lose energy through collisions with helium atoms.

注意方程(8.2)、(8.3)和(8.6)仅适用于在束流外边缘轨道上的电子——即最有能量的电子。这是因为束流中的一些电子会通过与氦原子的碰撞损失能量。

4 Procedure # 4 实验步骤 4.1 Derivations # 4.1 推导

Before you begin taking data, derive equations (8.4) and (8.6) using the concepts and basic assumptions described in the Introduction.

在开始收集数据之前,使用引言中描述的概念和基本假设推导方程(8.4)和(8.6)。

Check your work with your TA. When you write your lab report, you should include relevant equations from your derivation in your "Introduction" and "Methods" sections. Recall that your lab report should be clear and concise, so you should not include the full derivation in your report.

与你的助教核对你的工作。当你撰写实验报告时,你应该在"引言"和"方法"部分包含推导中的相关方程。记住你的实验报告应该清晰简洁,所以不应该在报告中包含完整的推导过程。

4.2 Orientation of the Coil and Tube Setup # 4.2 线圈装置的定向

For reasons already explained, we would like to orient the Helmholtz coils such that their axes are parallel to the horizontal direction of the ambient magnetic field. To do this,

出于已经解释过的原因,我们希望将亥姆霍兹线圈定向,使其轴线与环境磁场的水平方向平行。为此,

An example is shown in Fig. 8.4 Please exercise caution as you align the Helmholtz coils: the cathode ray tube is very delicate and may break if a large force is applied to it. It is recommended that you never touch the tube or the coils, and only maneuver the setup by touching the base.

一个示例如图8.4所示。 在对准亥姆霍兹线圈时请务必小心:阴极射线管非常脆弱,如果施加较大的力可能会破损。建议你永远不要触摸线圈,只能通过触摸底座来操作装置。

Figure 8.4: Example of the Helmholtz coils aligned to the ambient field.

图8.4:亥姆霍兹线圈与环境场对齐的示例。

4.3 Measurement of the Circular Orbits # 4.3 圆形轨道的测量

Once you are done with the alignment, you can turn on the setup and start taking data. Make sure only the dim incandescent ceiling lights in the room are on.

完成对准后,你可以打开装置并开始收集数据。确保房间里只开启昏暗的白炽天花板灯。

4.4 Summary of data: # 4.4 数据总结:

5 Analysis # 5 分析

When you finish the lab, you should have a data table for each accelerating voltage VV you used. The tables will contain values of II as a function of rr. To determine the charge to mass ratio e/me / m, you will plot II versus 1/r1 / r and perform the usual linear least squares analysis on the data.

当你完成实验后,你应该有每个使用的加速电压 VV 对应的数据表。这些表格将包含 II 作为 rr 的函数的值。为了确定电荷质量e/me / m,你将绘制 II1/r1 / r 的图,并对数据进行常规的线性最小二乘分析

I=A1r+DI=A \cdot \frac{1}{r}+D

Perform a weighted linear least squares fit to the data to find the slope AA, the intercept DD, and the standard errors σA\sigma_{A} and σD\sigma_{D} for each of the five curves.

数据进行加权线性最小二乘拟合,以找到五条曲线各自的斜率 AA截距 DD 和标准误差 σA\sigma_{A}σD\sigma_{D}

When you have completed the analysis, comment on the results. Consider the usual set of questions:

当你完成分析后,对结果进行评论。考虑以下常规问题:

e/m=1.758×1011C kg1e / m=1.758 \times 10^{11} \mathrm{C} \mathrm{~kg}^{-1}

Note that accuracy can be difficult to achieve in this laboratory. Do not become frustrated if your results exhibit significant discrepancies with respect to the accepted value of e/me / m. Discuss possible sources of the discrepancies and suggest several means to improve the experiment.

注意在这个实验室中很难达到高精确度。如果你的结果与 e/me / m 的接受值有显著差异,不要感到沮丧。讨论差异可能的来源,并提出几种改进实验的方法。